Desktop Engineering Blog

Benefits of 3DEXPERIENCE CATIA for Composite Design & Manufacturing

Paying attention to the careful design and material selection guidelines in the design and manufacturing of composites is vital to ensuring structural integrity of parts. Without adherence to guidelines in designing composites, this can lead to the development of poor-quality parts, which isn’t going to help anyone.

This is extremely important as the benefits of strong composite designs include the production of lightweight, impact resistant and strong parts compared to standard metal products. Ultimately, this leads to the manufacturing of better quality parts for a better-quality product, especially when these parts will be used in aircraft where safety protocols are extremely stringent. 

The production of better-quality parts is also important due to Governmental crackdowns on carbon emissions, particularly for aircrafts. But with composite design, the reduction in fuel costs and carbon emissions based on the production of lightweight structures helps to adhere to Governmental pressures.

Read More

Topics: 3DEXPERIENCE, Aerospace, Composites, CATIA

Boeing 737 MAX – The case for Instructor-led Training

The current issue over the recent crashes of two Boeing 737 MAX aircraft has uncovered many issues over the design, certification and operation of this new aircraft.

Read More

Topics: Aerospace, Training, Boeing 737 Max

The importance of composites in Aerospace and Automotive industries

Raise your hand if you’ve ever sat down and asked yourself ‘what can we do to improve our product quality?’ but struggled to find the most cost-effective way to do this. 

As the complexity of product designs increases, so too does the need to find the right materials and techniques to bring these designs to life. This is where composite materials come into their own. 

Here’s how your organisation can benefit from the use of composite materials and how the aerospace and automotive industries are making strides in the use of composites.

Read More

Topics: ICAM Technologies, Automotive / Motorsport, Aerospace

Understanding the risks in the aerospace supply chain

As consumers around the world are demanding greater access to air travel, this has led to orders for 38,000 new aircraft. Although this represents the potential for significant revenue, OEMs and suppliers face significant risks that they must overcome in order to develop these aircraft cost effectively and ensure a quick time to market. 

A major trigger of these risks is how OEMs are now tasking suppliers with designing aerospace parts in addition to manufacturing.

Read More

Topics: Aerospace, Original Equipment Manufacturer (OEM)

Topology Optimisation and 3D Printing

The use of FEA to design ‘optimal’ components has been around for nearly two decades.  In general terms it works by meshing an available volume for a part and then eating away at the space iteratively to leave just those bits of the mesh that are doing work while aiming at a target mass for the part, as in the examples below.


Using this method ‘raw’ it is easy to see how un-manufacturable designs can result, so much effort has been invested by software developers to place manufacturing constraints on the optimisation process to, for example, eliminate voids or undercuts in moulded parts.

Read More

Topics: Automotive / Motorsport, MSC Software, Finite Element Analysis (FEA), Aerospace

3 Ways to Improve Aircraft Design and Production

Producing 38,000 new aircraft over the next 20 years is a big ask. The amount of time and effort that goes into producing a single aircraft is high enough, so when we think of producing another 37,999, the pressure mounts.

That's why OEMs and suppliers need to be on top form when it comes to aircraft production. Unless the activities of suppliers and OEMs are managed properly, the delivery of these new aircraft may be significantly delayed. 

Read More

Topics: Aerospace

3 advantages of CATIA in Aerospace Composite Design and Manufacturing

Designing and manufacturing aerospace parts is complicated enough without having to worry about the structural integrity of parts. This is where the use of composite materials can take some of the pressure off.

Composite materials enable the production of lightweight, impact resistant parts compared to alternative metals. This allows OEMs to produce higher quality parts, which is particularly important for aircraft when we consider safety protocols. 

Read More

Topics: Aerospace

Implementing Risk Management in the Aerospace Supply Chain

Irrespective of size, all organizations across the aerospace supply chain face risks. Yet many organizations don’t have a systematic strategy in place to respond to risks. 

That’s why Aerospace supply chain partners need to implement a system of risk management, reducing the chances risks will negatively impact the organization’s bottom line.

Read More

Topics: Aerospace

The benefits of re-shoring the supply chain

One of the main reasons for moving manufacturing overseas has been to reduce costs. But today many OEMs are re-shoring the supply chain as going overseas no longer affords the costs advantages it used to.

For example, many companies used to benefit from off-shoring their manufacturing to China due to the low cost of labour. But increasing wages in China are prompting many businesses to bring manufacturing closer to home.

But it’s not only increasing wages pushing manufacturers to re-shore the supply chain. Re-shoring creates jobs and helps to boost the local economy. For example, Boeing are expanding their operations in St. Louis to develop parts for the Boeing 777X, beginning in 2017.

Read More

Topics: Aerospace

Making the most out of the aerospace supply chain

With OEMs under pressure to deliver 38,000 new aircraft over the next 20 years, suppliers need to be on top form when it comes to aircraft production. And unless the activities of suppliers and OEMs are managed properly, the delivery of these new aircraft may be significantly delayed. 

OEMs often make demands on suppliers that are not manageable, but the potential for a new contract means suppliers may not want to turn it down. For example, in aerospace, OEMs are shifting design responsibilities onto tier 1 suppliers who don’t often have much experience in this area.

Read More

Topics: Aerospace