Desktop Engineering Blog

Thin Shell Modelling of Plastic Parts

Posted by Andy Woodward on 25-Jul-2017 09:00:00

Thickness Attribution in MSC Apex

Read More

Topics: Various - MSC, MSC Software, FEA

OEM customers benefit from proven integration experience & expertise for Stage V transition

Posted by Geoff Haines on 18-Jul-2017 10:10:00

Attempts by the European Commission to reduce air pollution poses new challenges for engine manufacturers in the form of Stage V emissions standards. Many manufacturers can use their knowledge and experience with on-road developments to ensure off-road engine developments work efficiently.

Following on from our previously published Stage V emissions article and discussions around tougher standards for more engine types;  After-treatment systems for smaller engines; and DPF in the after-treatment system, John Deere has become one of the first to release their developments.

Read More

Topics: OEM, John Deere, Stage V Emmissions

On Cloud Collaborative Design

Posted by Geoff Haines on 14-Jul-2017 09:00:00

On Cloud software is the general trend of many applications – starting with email, it has progressed through to accounting software, customer relationship software and even finite element analysis.

Read More

Topics: CATIA on-Cloud, 3DExperience, PLM, Dassault Systemes, CATIA Design

Meshing Irregular Parts in Hex Elements

Posted by Andy Woodward on 11-Jul-2017 09:00:00

Almost all the solid element meshes I come across in the last decade or so have used second order 10 noded tetrahedral elements, and for most applications they are perfectly fine.  There are however some applications in some FEA solvers that require a hex8 element – for example some elastomer models, magneto and electro static solvers and some acoustic solutions.  How do you mesh an irregular part in hex elements?

Read More

Topics: Various - MSC, MSC Software, FEA

Modelling Methodology in CATIA V5 - Part 3

Posted by Alex Fernandes on 04-Jul-2017 09:00:00

The Design Phase

This is the third article of a series concerning how to implement and use modelling methodology in CATIA V5.

In this article, we will discuss the design stage in detail.

This is the first stage of the creation process; we will create a geometrical set called Skeleton and we will insert additional geometrical sets inside it. The component’s design intent is captured in the Skeleton geometrical set. Skeleton methodology has been around for quite some time now and the idea is to have to model’s main geometrical elements editable from one single location in the part’s specification tree. This also means that we will have many elements inserted inside this geometrical set, so for this reason we will rename them and organize them according to a specific logic.

Figure 1 - The Angle Bracket part

Read More

Topics: Dassault Systemes, training, CATIA, CATIA Design

Modelling Methodology in CATIA V5 - Part 2

Posted by Alex Fernandes on 27-Jun-2017 09:00:00

Specification Tree Organization

This is the second article of a series concerning how to implement and use modelling methodology in CATIA V5.

In this article, we will discuss how to organize the specification tree in a part file during the creation process.

1.  Avoid cryptic specification trees

In figure 1, you can compare the difference between; a part with an organized specification tree (left side) versus a part with mixed modelling specification tree (right side). Both files present the same end geometry, considering the initial parameters specified for the design.

Figure 1 - Organised specification tree vs mixed modelling versions of Angle Bracket part

Read More

Topics: Dassault Systemes, training, CATIA, CATIA Design

Modelling methodology in CATIA V5

Posted by Alex Fernandes on 20-Jun-2017 09:00:00

 Part creation process

This is the first article of a series concerning how to implement and use modelling methodology in CATIA V5.

In this article, we will cover the creation process for a part file. We will break it down in two stages; design stage and modelling stage.

Let us imagine you need to edit a part, changing some parameters in existing features, and that the geometry update process fails after modification. Models that fail after editing are brittle and they work fine if you do not edit them!

Read More

Topics: Dassault Systemes, training, CATIA, CATIA Design

Composite Zoning Optimisation

Posted by Andy Woodward on 15-Jun-2017 16:58:33

It is for good reasons that designing laminated composite structures is sometimes known as a ‘black art’.  It is not easy to intuit from the topology of and loads applied to a component what a good ply layup should be.  Many companies rely on the wisdom of veteran engineers’ hard won experience, but sometimes it is necessary to take a step back and ask “what else could we try?”.

Often the design of a composite layup starts with the definition of zones within a part.  The layup on each of these zones can then be fettled using FEA to arrive at a stacking sequence which can then be used to define plies. 

But how do you choose the zones? Is it arbitrary based on the topology of the part? Do you just chequer-board your panel into regular squares?  You could use a technique developed with MSC Nastran for one of the F1 companies.

Read More

Topics: Various - MSC, MSC Software, FEA, Analysis, MSC Nastran, Composites

Dassault Systemes certification & accreditation

Posted by Geoff Haines on 06-Jun-2017 11:38:00

Desktop Engineering’s team fully certified!

Desktop Engineering has always placed great importance on the technical team continuing their personal education and training in the software applications we supply and support. 

No more so than across the broad capabilities that Dassault Systemes develops for design and manufacturing industries. With a foundation on the core CATIA design application, the comany has continued to ensure that the team become fully conversant and skilled with all new releases and developments that come year after year from Dassault Systemes.

Read More

Topics: Various - CATIA, training

Fracture Mechanics

Posted by Andy Woodward on 30-May-2017 11:30:00

Modelling Cracks the Easy Way

In my previous blog I talked about the advantages of automatic re-meshing in the analysis of rubbers in improving accuracy and stability of a simulation.  One advanced application of this capability that was not touched upon was in the field of crack propagation.

In many industries it is sufficient to use your analysis to predict that a crack could initiate and redesign the part to avoid this occurrence.  In others though it is possible that a crack may be identified from an in-service inspection whereupon it becomes necessary to understand if it will propagate under the loads applied and how quickly so that a replacement can be introduced in a timely manner.

Predicting crack growth in materials with finite elements can seem more art than science. 

As an example, in some codes you may need to construct a very precise ‘rosette’ mesh at the crack tip.

A series of angular perturbations to the crack tip node are then simulated to look at the energy release resulting from extending the tip with the assumption being it moves in the direction of the greatest energy release.

Read More

Topics: Various - MSC, MSC Software, FEA, Analysis